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Abstract. The application of the Domb-Joyce model to polymer chains of finite length is 
discussed. Techniques are developed which permit the computation of the mean square 
end-to-end length ( R a w ) )  of a lattice walk with an interaction o. Numerical estimates of 
the first three coefficients of the series a*= 1 + k l o z + .  . . are obtained for various N, and 
these estimates are extrapolated to N infinite, thus yielding the two-parameter value. The 
results are in excellent agreement with theoretical predictions, and confirm the uni- 
versality hypothesis of Domb. Some consideration is given to the possible form of 
corrections to the two-parameter function. 

1. Introduction 

In a separate article (Barrett and Domb 1977, to be referred to as I), the diagrammatic 
expansion associated with the Domb-Joyce model of a linear polymer chain is discussed 
at some length. The expansion factor a 2  = (Raw)) / (Rk)  is developed in perturba- 
tion series in the interaction w ,  in the limit N+w,  w + O ,  N”’w finite-the so called 
two-parameter limit. This two-parameter expansion has been extensively studied (see 
Yamakawa 1971 for a general review) but relatively little attention has been given to 
the analogous series for finite chains. One should, however, mention the work of 
Eichinger (1973) (see also Aronowitz and Eichinger 1975), who has obtained results for 
the radius of gyration of finite continuum chains. In this paper we intend to discuss in 
detail the application of the techniques of I to finite walks. This is of obvious 
importance, since the range of application of the two-parameter results is limited. 

Furthermore, this method may be easily applied to any lattice or continuum model, 
including those for which no asymptotic results are available. For lattice walks with a 
very high coordination, the diagrammatic expansion may well compete in efficiency 
with other established methods of lattice enumeration (e.g. Martin 1962). Finally the 
results so obtained for finite N may be extrapolated to the case of infinite N, thus 
yielding two-parameter results. 

2. The perturbation series 

The reader is referred to previous articles (I, Domb and Joyce 1972, Domb and 
Barrett 1976) for a more detailed description of the model. In brief, a statistical weight 
of (1-w) is associated with each self-intersection of an N-step random walk (on- or 
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off-lattice), so that the total weight assigned to a walk is 

where Sjj is unity if the ith and jth steps coincide, and zero otherwise. w may take values 
between zero, the random walk limit, and one, the self-avoiding walk value. 

In the presence of this interaction we define the generating functions cN(w) ,  cN(I, U ) ,  

~ ~ ( 0 )  and R ~ U )  which represent respectively the number of walks, the number of 
walks terminating a vector distance I from the origin, the number of returns, and the 
mean square end-to-end length. We also define 

If these functions are expanded in powers of 0, we obtain the series: 

CN(w)=C(N,o)+C(N, I )@+. 3 .  

c$’(w) = c(2)(N,  0) +d2’(N,  1)w +. . . . (3) 

c(N, r )  represents the number of N-step random walks with r or more self-intersections. 
Similarly c”’(N, r )  is a weighted sum of the length squared of N-step walks with r or 
more contam. It is clear that 

C(N, 0) = cN = q N  

C ( y N ,  O)/CN=(R;)=Na2 

(4) 

and 

where q is the coordination (if applicable) and (I?;) is the mean square length of N-step 
random walks; a is the step length. 

If N is finite, the series (3) have a finite number of terms. The other important 
expansion is 

a 3 w )  = (R%w))/(I?;) = 1 + k lw  + k z W 2  + . , , 

( R  1) = c g)(U )/ CN (U) ( 6 )  

( 5 )  

which is an infinite series for both finite and infinite N. However since 

it is clear that in the former case, ( 5 )  will converge to a rational function. For infinite N, 
this series has been shown to be asymptotic (Edwards 1975). 

Much of this paper is concerned with the evaluation of the coefficients c(N, r )  and 
c(’)(N, r ) .  The k, are functions of N which may be obtained from cN and c g )  fairly 
easily. From (3) and (6), one finds by elementary manipulation of series: 

where 
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3. The diagrammatic expansion 

Evaluation of c ( N ,  r )  and c(”(N, r )  requires the enumeration of random walks. This 
may be done directly (Lax et a1 1977; Alexandrowicz and Accad 1973 have performed 
Monte Carlo experiments of this nature); however, it is our intention to make use of 
random walk generating functions. Define 

The interpretation of these functions should be obvious. For more complex configura- 
tions we define 

(9) ~ ~ ( x )  = 1 rj;)xN W , ( X ) = C w N x  0‘) N . 
r$ is the fraction of polygons which have the configuration labelled i. wg), similarly, is 
the fraction of migrations (walks not terminating at the origin) which have the 
configuration j .  As a particular example define W 3 ( x )  by 

w 3 ( x )  = c ,‘;’xN = 1 1 p f l i ( r ) p f l ~ ( r ) p f l 3 ( r ) x ~ ’ + ~ ~ + ~ ’  ( n  + n2 + n3 = N). 
m 

N = 3  f l l , f l Z , f l 3  1 

(10) 

(1 1) 

To keep account of the length of these walks we define 

Q(x,  4) =Z I N  c pN(l)x:’x:”x:‘xN = (1 -x4)-’ 

and 

Qi(x,  4) = x c w!$)(l)x:’x:”x$xN 
I N  

analogously to P ( x )  and W i ( x ) .  For reasons which will shortly become apparent, also 
define 

4 ( x l ,  x2,  x3)  is the basic generating polynomial for the lattice. For the simple cubic 
lattice 

& ( X l ,  x2, x3) = & ( X I  + x i  f X 2  + x;’ +x3 + x i 1 ) .  
Consider now the computation of c ( N ,  1). This is simply the number of walks which 
have at least one interaction, and which may be schematically represented by figure 1. 

Figure 1. 
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We may think of this as an n2-step polygon attached to an nl-step chain, and thus 

It is not too hard to show that c(N, 1)/cN is the coefficient of xN in the generating 
function P2R. In a similar fashion 

c(’)(N, 1) = E  /’(nl+ I ) C n ~ ( ~ ) ~ n ~  
1 n1n2 

so that (see Domb and Joyce 1972), c(”(N, l)/cN is the coefficient of x N  in the 
generating function 

RV2(Q2)(i,i,1) = V’(Q’R)(l,l,l) 

where 

a’ a’ a2 V ’ = 7 + 7 + 7 .  
axl ax2 an3 

F i e  2. General chain with attachments and insertions. 

We therefore assign to the graph shown in figure 1 the generating functions P2R and 
Q’R. A general graph is shown in figure 2 containing m attached polygons 
R l ,  R2, . . . , R,, and 1 inserted migrations W1, . . . , WI. With this graph we associate the 
generating functions. 

and (13) 

m + / - 1  m + l + l  x P R I . .  . R,W1. , .  WI 

( X ~ , ~ I ) ~ + ‘ - ~ Q ~ + ‘ + ~ R ~  . . . R,Q1 . . . QI. 

These functions must be multiplied by the weight of the graph, which has three factors: 
(i) the number of different permutations of the attachments and insertions in the 

chain; 
(ii) the product of the weights of the different vertices; 

(iii) the product of the intrinsic weights of the various attachments and insertions. 
These weights will be discussed in greater detail in an appendix. 

To complete the formal develo ment, it is only necessary to discover which 
diagrams contribute to c(N, r )  and c (N,  r ) ,  and then to ascertain the coefficients of x N  
in the associated generating functions. 

A complete set of rules for obtaining the graphs has been given in I. The following 
recursive method is more convenient €or hand computations; the ( r  - 1)-order graphs 
are assumed. 

(27 

(i) For each ( r  - 1)-order graph: 
( a )  label each edge by an integer 1,2, . . . and each vertex by a letter a, b, . . . ; 
( b )  construct an r-order graph for the ( r -  1)-order graph by ‘pinching’ 
together a pair of edges 11,12, .  . . , a pair of vertices aa, ab , .  . , or an 
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edge-vertex pair l a ,  l b ,  . . . ,2a ,  26, . . . . Do this for all possible pair combina- 
tions. The vertex pair aa corresponds to adding another interaction contact at 
the vertex a if this can be done. (A vertex of degree 2n may have from ( n  - 1 )  
to n(n - 1)/2 interaction contacts. See appendix.) 

(ii) Collect all different graphs given by the above rule. These are the graphs which 
contribute to c(N, r) and c(')(N, r). 

To illustrate the application of these rules, some of the third-order graphs resulting 
from the pinching of a second-order graph are shown in figure 3. Suppose now we have 

W 

Figure 3. Some results of applying the 'pinching' technique. 

p r-order diagrams. By taking the coefficient of x N  in the associated generating 
function we may calculate the contributions $? and ~ r ( ~ )  from the ith graph. Then, 
clearly 

If the generating function (13)  represents the ith diagram, it is not hard to show that 

where gm = 
n is 

ni. Use has been made of the result that the number of m partitions of 

We also find 

which reduces to 

for 1 = 0. Thus, applying (16 )  to the diagram of figure 4, one obtains the (unweighted) 
contribution to + 5 :  

where ( ~ 3  = nl + n2 + 113. 
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n 

Figure 4. 

4. Evaluation of lattice constants 

It only remains to evaluate rn, wL3), ti3) etc for the model under consideration. Again this 
may be done diectly, by enumerating all N-step walks and measuring the fraction 
which have the appropriate configuration. An alternate approach is to write, for 
instance 

and to perform the 1 sum. 

that of figure 5 is represented by 
Complicated configurations may be easily built up from simpler ones. For instance 

F i e  5. 

To tabulate the p N ( l )  for the cubic lattices we make use of the result (e.g. Montroll 
1964) for s dimensions 

" 1 "  
pN( l )  =s . . . A N ( k )  e-iL1 d'k, 

-" 
For the BCC lattice, the characteristic function A is given by 

A (kl, kz, k3) =COS kl COS kz COS k3. 

Noting that 

1 "  ~ 0 s " ~  e-'i1X dx = I$(+(: 1 ) )  
N - 1 even and 30 

iG I_" 
0 otherwise, 

it is trivial to show that for the BCC lattice 
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with the appropriate conditions on $(N - 11) etc. This simple technique is easily applied 
to any cubic lattice to give an expression similar to (20). For 1 = 0, these expressions are 
equivalent to those given by Domb (1960). 

For the Gaussian continuum model, Chandrasekhar's (1943) result may be used: 

In two dimensions 

It is interesting to note that for the two-dimensional Gaussian model, equations (7) 
yield the exact expression for k : 

For the continuum model, the lattice sums in quantities like (18) must be replaced by 
space integrals, which can then be performed. Thus, for instance, 

3 3  
WE'= (7) 1 (nln2+n2n3+n3n1)-3/2 

2lra m 3 = ~  

5. Fitting of the virial expansion 

The above techniques were applied to the evaluation of k l ,  k 2  and k 3  with a view to 
showing the convergence of these to a common two-parameter limit, for all models as 
discussed in Domb and Barrett (1976). It is not hard to show that k,  has the expansion 

k,  = + A  iN('-1)'2 + . . . , (24) 
Thus values of k,  obtained for various N may be divided by Nr/2  (N' in two dimensions) 
and fitted to the form (24) truncated after, say, p terms. The value of p is chosen to give 
the best fit. A, is the two-parameter estimate. Enumerations of k l  for the sc lattice to 
40 steps yielded the two-parameter value correct to three decimal places, while 
enumerations for the Gaussian model to lo4 steps gave much better accuracy. Typical 
results are shown in figure 6 in which k l / N  is divided by an appropriate scale factor ho 
for the two-dimensional Gaussian model, the simple quadratic lattice, and triangular 
lattice. The convergence to the two-parameter value can be clearly seen. Similar 
graphs for k l  and k 2  for three-dimensional models have already been published (Domb 
and Barrett 1976). 

The accuracy of this procedure to obtain numerical estimates for the k, can be 
expected to deteriorate badly as r increases. The graphs may be divided into two 
classes-ladder graphs and non-ladder graphs (see I). In general, the dominant 
contribution of a ladder graph is of order N', whereas the final result is only of order 

. The considerable cancellation which occurs for large r can be expected to lead to 
significant errors. This problem may be circumvented to some extent by considering 
only the contribution of non-ladder diagrams, whose contribution is, in general, of 
order Nr12 In N. The two-parameter contribution of the ladder diagrams may be easily 
obtained using a functional relation (see I). Extrapolating the non-ladder contributions 

N'/2 
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3 1 2 4  
0 0 3L 008 

1 / N  

Figure 6. k l / h o  against 1/N for two-dimensional models: -, Gaussian; 0, simple 
quadratic lattice; *, triangular lattice. 

for k3 obtained in this manner, we find the estimated numerical value k3 = 6.3010.03 
which is in excellent agreement with the value 6.2969 predicted in I, and also with the 
value previously obtained by Subirana et a1 (1962): 6.3 *0.2. The extrapolation 
technique may also be used to verify the asymptotic contribution of certain coefficients. 
(See for example figure 7.)  

"i 

I 
O ' I  

1 
'5 91 0 2  0 3  3 L  

p4- l /2  

Figure 7. tg)/47rh; plotted against NI'*. 0, Gaussian model; +, sc (odd); X, sc (even); V, 
BCC (odd); A, BCC (even); 0, FCC (odd); 0, FCC (even); 0, theoretical two-parameter 
value. 

6. Correction terms to the two-parameter function 

The equations ( 5 )  and (24) together suggest that (in three dimensions) 

1 1 
a Z = c L o + p * 1 + j q 4 + 2 + .  . . 
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where cl/o is the two-parameter function, and 

~ , = A ; ~ + A ; ~ ~ + . . . .  

~ C ~ ~ = A I ; Z + A ; Z ~ + .  . . . 
z = h o N 1 ' 2 ~ ,  where ho is the scale factor mentioned in the previous section. 

One expects the A: etc to be lattice-dependent. However, the estimates shown in 
table 1, obtained by means of the fitting technique of the previous section, show very 
little lattice dependence. The obvious suggestion that a' is the same function of the 
variables z and N for the lattices listed certainly deserves further investigation. 

Table 1. Coefficients of correction terms in the virial expansion. The bracketed figures are 
those with a high degree of uncertainty. 

sc 3.27 11.5 5.0 15.0 
BCC 3.31 11.6 5.0 15.0 

diamond 3.24 - 5.0 
FCC 3.43 (12) 5.2 (17) 

- 
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Appendix. Weights of graphs 

(i) Vertex weight. If a graph vertex of degree 2n represents m interaction contacts 
(n  - 1 s m S $ n ( n  - l)), then the weight of this vertex is exactly equal to the number of 
connected graphs of m edges which may be constructed on n points (see Domb and 
Joyce 1972). 

(ii) Weights of attachments and insertions. Consider the graph of figure 5 .  It is 
represented by the generating function 

Each term with n l  f n2 it n3 f n4 occurs 4! times in the sum, and hence the generating 
function 'overcounts' the graph by this factor, which we shall call the sum factor F,. On 
the other hand, the graph may be traversed in exactly 4! ways-it thus represents 4! 
different walks. We say that the path factor is Fp = 4!. The reduced weight FR to be 
applied to the generating function R4 is therefore 

The same general principles apply to any graph; the sum factor is always easily 
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determined, but the path factor is in general more difficult. To find Fp proceed as 
follows. Suppose a graph to be constructed of M edges and k vertices. These vertices 
are labelled consecutively 1 ,2 ,3 ,  . . . , k.  Let mii be the number of edges joining the 
vertices i and j .  Clearly C mij = M. We now define the matrix A with elements 

I Yii if a path exists between vertices i and j 
Aij = lo- 

ot herwise. 

Then defining the vector P, by 

P,’ = (p:”’, . . . , pP’) 

with PI’’ = 0, i < k and pio’ = 1, it follows that P, = AP,-,. Fp is then the coefficient of 
llyp in pl‘’ for polygons and in piM’ for migrations. 
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